Replication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs.
نویسندگان
چکیده
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.
منابع مشابه
Microsatellite (SSR) amplification by PCR usually led to polymorphic bands: Evidence which shows replication slippage occurs in extend or nascent DNA strands
Microsatellites or simple sequence repeats (SSRs) are very effective molecular markers in population genetics, genome mapping, taxonomic study and other large-scale studies. Variation in number of tandem repeats within microsatellite refers to simple sequence length polymorphism (SSLP); but there are a few studies that are showed SSRs replication slippage may be occurred during in vitro amplifi...
متن کاملEvolution and phylogenetic information content of mitochondrial genomic structural features illustrated with acrodont lizards.
DNA sequences from 195 squamate reptiles indicate that mitochondrial gene order is the most reliable phylogenetic character establishing monophyly of acrodont lizards and of the snake families Boidae, Colubridae, and Viperidae. Gene order shows no evidence of evolutionary parallelisms or reversals in these taxa. Derived secondary structures of mitochondrial tRNAs also prove to be useful phyloge...
متن کاملEvolution of Nucleotide Punctuation Marks: From Structural to Linear Signals
We present an evolutionary hypothesis assuming that signals marking nucleotide synthesis (DNA replication and RNA transcription) evolved from multi- to unidimensional structures, and were carried over from transcription to translation. This evolutionary scenario presumes that signals combining secondary and primary nucleotide structures are evolutionary transitions. Mitochondrial replication in...
متن کاملRepeated parallel evolution of minimal rRNAs revealed from detailed comparative analysis.
The concept of a minimal ribosomal RNA-containing ribosome, a structure with a minimal set of elements capable of providing protein biosynthesis, is essential for understanding this fundamental cellular process. Nematodes and trypanosomes have minimal mitochondrial rRNAs and detailed reconstructions of their secondary structures indicate that certain conserved helices have been lost in these ta...
متن کاملModelling the secondary structures of slippage-prone hypervariable RNA regions: the example of the tiger beetle 18S rRNA variable region V4.
Variable regions within ribosomal RNAs frequently vary in length as a result of incorporating products of slippage. This makes constructing secondary structure models problematic because base homology is difficult or impossible to establish between species. Here, we model such a region by comparing the results of the MFOLD suboptimal folding algorithm for different species to identify conserved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 14 1 شماره
صفحات -
تاریخ انتشار 1997